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ABSTRACT: The simplest experimental method to deter-
mine the Hansen solubility parameters (HSPs) for a poly-
mer is to evaluate whether or not it dissolves in selected
solvents. Those solvents dissolving the polymer will have
HSPs closer to those of the polymer than those that do
not. A computer program or graphical method can then be
used to find the HSP for the polymer. In this work, an

improved method for calculating the HSP of polymers,
based on the Nelder–Mead optimization algorithm, is pre-
sented. The results of this program fit the data very
well. � 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 31–36,
2007
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INTRODUCTION

Solubility parameters have found their greatest use in
the coatings industry, aiding in the selection of sol-
vents. They are used in other industries, however, to
predict the compatibility of polymers, chemical resist-
ance, and permeation rates and even to characterize
the surfaces of pigments, fibers, and fillers. Liquids
with similar solubility parameters will be miscible,
and polymers will dissolve in solvents whose solubil-
ity parameters are not too different from their own.1

The solubility parameter has been used for many
years to select solvents for coating materials. A lack of
total success has stimulated research. The skill with
which solvents can be optimally selected with respect
to the cost, solvency, workplace environment, external
environment, evaporation rate, flash point, and so
forth has improved over the years as a result of a se-
ries of improvements in the solubility parameter con-
cept and widespread use of computer techniques.
Most, if not all, commercial suppliers of solvents have
computer programs to help with solvent selection.

The term solubility parameter was first used by Hil-
debrand and Scott.2,3 The earlier work of Scatchard4

and others was contributory to this development. The
Hildebrand solubility parameter (d) is defined as the
square root of the cohesive energy density:

d ¼
ffiffiffiffi
E

V

r
(1)

where V is the molar volume of the pure solvent and
E is its (measurable) energy of vaporization. d is an
important quantity for predicting solubility relations,
as can be seen in the following brief introduction.
Thermodynamics requires that the free energy of mix-
ing (DGM) be zero or negative for the solution process
to occur spontaneously. The free energy change for
the solution process is given by the following relation:

DGM ¼ DHM � TDSM (2)

where DHM is the heat of mixing, T is the absolute
temperature, and DSM is the entropy change in the
mixing process.

Equation (3) gives DHM as proposed by Hildebrand
and Scott:2,3

DHM ¼ j1j2VMðd1 � d2Þ2 (3)

where subscript 1 and 2 are related to solute and sol-
vent, respectively. The j variables are volume frac-
tions of the solvent and polymer, and VM is the vol-
ume of the mixture.

Equation (3) is not correct. This equation has often
been cited as a shortcoming of this theory, in that
only positive heats of mixing are allowed. It has
been shown by Patterson and coworkers5–10 that the
noncombinatorial free energy of solution (DGM

noncomb),
not DGM, is given by the right-hand side of eq. (3).
The correct relation is

DGM
noncomb ¼ j1j2VMðd1 � d2Þ (4)

DGM
noncomb includes all free energy effects other than the

combinatorial entropy of solution occurring because
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of simple mixing of the components. Equation (4) is
consistent with the Prigogine corresponding states
theory of polymer solutions and can be differentiated to
give expressions predicting both positive and negative
heats of mixing.3,5 Therefore, both positive and negative
heats of mixing can be expected from theoretical con-
siderations and have been measured accordingly. It has
been clearly shown that solubility parameters can be
used to predict both positive and negative heats of mix-
ing. Previous objections to the effect that only positive
values are allowed in this theory are not correct.

A more detailed description of the theory presented
by Hildebrand and the succession of research reports
that have attempted to improve on it can be found in
Barton’s extensive handbooks.11,12 The slightly older
but excellent contribution of Gardon and Teas13 is also
a good source of related information, particularly for
coatings and adhesion phenomena. The approach of
Burrell,14 who divided solvents into hydrogen-bond-
ing classes, has found numerous practical applica-
tions; the approach of Blanks and Prausnitz15 divides
the solubility parameter into two components, nonpo-
lar and polar. Both are worthy of mention.

A widely used solubility parameter approach to
predicting polymer solubility is that proposed by the
Hansen. The basis of these so-called Hansen solubility
parameters (HSPs) is that the total energy of vaporiza-
tion of a liquid consists of several individual parts.16–19

These arise from (atomic) dispersion forces, (molecu-
lar) permanent-dipole/permanent-dipole forces, and
(molecular) hydrogen bonding (electron exchange).
The basic equation that governs the assignment of
Hansen parameters is that the total cohesion energy
(E) must be the sum of the individual energies that
make it up:

E ¼ ED þ EP þ EH (5)

where ED, EP, and EH are dispersion, permanent-
dipole/permanent-dipole, and hydrogen bonding
forces, respectively. Dividing this by the molar vol-
ume gives the square of the total (or Hildebrand) solu-
bility parameter as the sum of the squares of the Han-
sen D, P, and H components:

E=V ¼ ED=V þ EP=V þ EH=V (6)

d2 ¼ d2d þ d2p þ d2h (7)

where dd, dp, and dh are the dispersion, polar, and
hydrogen-bond parts of HSPs, respectively. To sum
up this section, we emphasize that HSPs quantita-
tively account for the cohesion energy (density). An
experimental latent heat of vaporization has been con-
sidered much more reliable as a method for arriving at
a cohesion energy than using molecular orbital calcu-
lations or other calculations based on potential func-

tions. Indeed, the goal of such extensive calculations
for polar and hydrogen-bonding molecules should be
to accurately arrive at the energy of vaporization.

In this work, we focused on Hansen’s algorithm
and program to calculate HSPs of polymers, and we
succeeded in improving this algorithm and omitting
the numerical errors of Hansen’s numerical method.

RESULTS

The algorithm of our work is the same as Hansen’s
algorithm for calculating HSPs for polymers.1 The
data input is by the solvent number followed by an in-
dication of the quality of the interaction with that sol-
vent. 1 indicates a good solvent, whereas 0 is used for
a bad solvent. What is considered good or bad varies
according to the level of the interaction being studied.
This can be a solution or not, a given percentage of
swelling or uptake, a breakthrough time less than a
given interval, permeation coefficients higher than a
given value, long-time suspension of a pigment, and
so forth. The program systematically evaluates the
input data with a quality-of-fit function called the
Desirability Function.20 This suggestion was made by a
reputed statistician many years ago as the most
appropriate statistical treatment for this type of prob-
lem. It has been in use since the late 1960s. The func-
tion has the following form:

DataFit ¼ ðA1 � A2 � � � � � AnÞ1=n (8)

where n is the number of solvents for which there are
experimental data in the correlation. DataFit in eq. (8)
approaches 1.0 as the fit improves during an optimi-
zation and reaches 1.0 when all the good solvents are
included within the sphere and all the bad ones are
outside of it:

Ai ¼ eðErrorDistanceÞ (9)

Ai for a given good solvent within the sphere and for
a given bad solvent outside the sphere is 1.0. The error
distance is the distance to the sphere boundary for
the solvent in error either as being good and outside
the sphere or as being bad and inside the sphere. Ro is
the radius of the sphere, and Ra is the distance from a
given solvent point to the center of the sphere. Ro is
one of the targets of our program that is calculated. Ra

is calculated with eq. (10):

Ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðdd � ddpÞ2 þ ðdp � dppÞ2 þ ðdh � dhpÞ2

q
(10)

where dd, dp, and dh are the HSPs of the solvent and
ddp, dpp and dhp are the HSPs of the polymer, which are
targets of our program with Ro. These four target pa-
rameters are calculated from our algorithm as illus-
trated in Figure 1.
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If Ra for a solvent is smaller than Ro of the polymer,
this solvent can dissolve the polymer (Ra/Ro < 1), and
if the Ra for a solvent is larger than Ro of the polymer,
this solvent cannot dissolve the polymer (Ra/Ro > 1).
The equality of Ra with Ro is the boundary of solubil-
ity and nonsolubility. For a good solvent outside the
sphere, an error enters DataFit according to

Ai ¼ eþðRo�RaÞ (11)

Such errors are often found for solvents having low
molecular volumes. For a bad solvent inside the sphere,
the contribution to the DataFit is

Ai ¼ eþðRa�RoÞ (12)

Such errors can sometimes be found for larger molecu-
lar species such as plasticizers. This is not unexpected
for the reasonsmentioned earlier.

This program assumes a starting point based on an
average of HSPs for all solvents. In this section, our
method changes from the method of Hansen for the
calculation of the polymer HSP. Hansen performed
his calculation with a pseudo-optimization method,
and his results for DataFit are not equal to 1.0 for
many examples. In this work, we applied the Nelder–
Mead algorithm, which was presented by Lagarias

Figure 1 Flowchart of the program.
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et al.21 and is available in the Optimization Toolbox of
MATLAB, to minimize the objective function. We
defined the objective function for this optimization
process as follows:

ObjectiveFunction ¼ jDataFit� 1j (13)

Our aim in this study was finding the global mini-
mum of this objective function. The aim of this algo-
rithm is the calculation of Ro value for the polymer,
for which all good solvents have Ra values smaller
than this Ro value and all bad solvents have Ra values
larger than this Ro value. After testing the program for
several polymers, we found that the value of DataFit
in eq. (8) is a very important factor for calculating the

HSP of the polymer (see Fig. 1). Hansen’s program
finds the HSP of the polymer in the neighborhood of
the answer region, and in this program, Hansen did
not recommend that DataFit must be unity. This latter
condition influences the calculated values of the poly-
mer HSP and radius of the solubility sphere very
much. For more illustration of our explanation, we
can refer to the example of poly(ether sulfone), which
was illustrated by Hansen.1 This example is very use-
ful for illustrating some problems of Hansen’s pro-
gram for calculating the HSPs of polymers. Hansen
tested 41 solvents for this polymer, and the results are
in Table I. In this work, Hansen obtained the value of
0.999 for DataFit and the values of 19.6, 10.8, 9.2, and
6.2 for dd, dp, dh, and Ro, respectively, in this problem.

TABLE I
Results for a Sample of Poly(ether sulfone) Compared with Hansen’s Results

Solvent dd dp dh Solubility Ra/Ro
a Ra/Ro

b

Methyl-2-pyrrolidone 18 12.3 7.2 1 0.655 0.7576
Dimethyl formamide 17.4 13.7 11.3 1 0.915 0.9575
Acetophenone 19.6 8.6 3.7 1 0.955 0.9365
Methylene dichloride 18.2 6.3 6.1 1 0.99 0.9998
Dimethyl sulfoxide 18.4 16.4 10.2 0 0.996 1
g-Butyrolactone 19 16.6 7.4 1 0.998 1
Ethylene dichloride 19 7.4 4.1 0 1.007 1.0002
Isophorone 16.6 8.2 7.4 0 1.094 1.147
o-Dichlorobenzene 19.2 6.3 3.3 0 1.204 1.1653
Tetrahydrofuran 16.8 5.7 8 0 1.237 1.2464
Diacetone alcohol 15.8 8.2 10.8 0 1.321 1.3403
Methyl ethyl ketone 16 9 5.1 0 1.368 1.4091
Acetone 15.5 10.4 7 0 1.371 1.4199
2-Nitropropane 16.2 12.1 4.1 0 1.387 1.433
Ethylene glycol monoethyl ether 16.2 9.2 14.3 0 1.395 1.3722
Propylene carbonate 20 18 4.1 0 1.429 1.3669
Cyclohexanol 17.4 4.1 13.5 0 1.467 1.389
Chloroform 17.8 3.1 5.7 0 1.483 1.4333
Trichloroethylene 18 3.1 5.3 0 1.485 1.4314
1,4-Dioxane 19 1.8 7.4 0 1.493 1.3923
Ethyl acetate 15.8 5.3 7.2 0 1.547 1.5449
Ethylene glycol monobutyl ether 16 5.1 12.3 0 1.563 1.5253
Chlorobenzene 19 4.3 2 0 1.576 1.5049
Nitroethane 16 15.5 4.5 0 1.58 1.6061
Ethylene glycol monomethyl ether 16.2 9.2 16.4 0 1.618 1.556
Butyl acetate 15.8 3.7 6.3 0 1.741 1.7129
1-Butanol 16 5.7 15.8 0 1.777 1.6978
Methyl isobutyl ketone 15.3 6.1 4.1 0 1.782 1.7758
Nitromethane 15.8 18.8 5.1 0 1.899 1.8855
Toluene 18 1.4 2 0 1.978 1.8834
Ethanol 15.8 8.8 19.4 0 2.077 1.9616
Diethylene glycol 16.6 12 20.7 0 2.101 1.9665
Benzene 18.4 0 2 0 2.129 2.0073
Diethyl ether 14.5 2.9 5.1 0 2.183 2.1305
Ethanol amine 17 15.5 21.2 0 2.241 2.0905
Carbon tetrachloride 17.8 0 0.6 0 2.301 2.1805
Propylene glycol 16.8 9.4 23.3 0 2.457 2.2741
Methanol 15.1 12.3 22.3 0 2.575 2.4211
Hexane 14.9 0 0 0 2.745 2.6315
Ethylene glycol 17 11 26 0 2.837 2.614
Formamide 17.2 26.2 19 0 3.044 2.8435

a Obtained with Hansen’s program (dd ¼ 19.6, dp ¼ 10.8, dh ¼ 9.2, Ro ¼ 6.2, DataFit ¼ 0.999).1
b Obtained with our program (dd ¼ 20.0902, dp ¼ 10.6302, dh ¼ 9.5715, Ro ¼ 6.7162, DataFit ¼ 1).
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These results were repeated with our method with the
value of 0.999 for DataFit. The obtained results of our
program with the value of 1 for DataFit, as shown in
Table I, are 20.0902, 10.6302, 9.5715, and 6.7162 for dd,
dp, dh, and Ro, respectively. These values are different
from Hansen’s values!

Our program contains three functions. This pro-
gram was written with the MATLAB software base
and is shown in the appendix. The main function is
the HSP.m function. This function works as illustrated
in Figure 1. The function after running, called the Sol-
vent_Database.m function, contains the solvent prop-
erties needed for calculation. After the definition of
the parameters, it needs values for the first guess of
target parameters ddp, dpp, dhp, and Ro. In this program,
we used the average values of dd, dp, and dh of the sol-
vents for the first guess of ddp, dpp, and dhp and the
sum of the square root of the first guess of ddp, dpp, and
dhp for the first guess of Ro. After this section, the
QF.m function is called by the fminsearch function of
MATLAB. The QF.m function contains the DataFit
function. Fminsearch is one of the interior functions of
MATLAB. This function works with the Nelder–Mead
algorithm to minimize a function. In this section, we
want to minimize the objective function of eq. (13). Af-
ter the QF.m is minimized, the results, containing ddp,
dpp, dhp, and Ro of the polymer and the solvent proper-
ties, are shown in the workspace.

As illustrated in Table I, the values of HSP for poly
(ether sulfone) are very much affected by the value of
DataFit. The difference between the values of DataFit
in Hansen’s work and our work is 0.001, but this small
difference affects the value of the polymer HSP con-
siderably. This uncertainty in the HSP values for poly
(ether sulfone) affects the values of HSP and Ro of
the polymer. One of the most important of these
effects is the prediction of the solubility of poly(ether
sulfone) in dimethyl sulfoxide (see Table I). Hansen’s
program predicts that poly(ether sulfone) will be solu-
ble in dimethyl sulfoxide, but he showed that this is
not true experimentally. Our program predicts that
dimethyl sulfoxide will not be a solvent for poly(ether
sulfone). If the value of DataFit goes far from unity,
the uncertainty of the prediction is increased.

CONCLUSIONS

The method presented in this article determines more
accurately the HSP and radius of the interaction
sphere of a polymer because of the original work of
Hansen1 with an improved mathematical method.

This program is presented in this article, is simple,
and can be easily implemented on a computer. DataFit
is one of the most important parameters in the calcula-
tion of the polymer HSP. A small deviation of DataFit
from unity causes a quite large deviation in the values

of the HSP and radius of the interaction sphere of the
polymer. A deviation in the values of HSP and Ro of
the polymer causes error in the prediction of the solu-
bility of the polymer in solvents.

This method omits the numerical errors of Hansen’s
method for determining the HSP of a polymer.

APPENDIX

For performing this program, please insert these three
functions into a directory, then insert this directory as
the directory of MATLAB workspace, then type HSP
in the workspace and see results.

HSP.m

% A Simple Program To Calculate Hansen Solubility
Parameters

% Farhad Gharagheizi & Mahmood Torabi Angaji,
% Department of Chemical Engineering,
% Faculty of Engineering, University of Tehran.
% 30 September, 2005.
%-----------------------------------------------------------
clc
clear all
Solvents_Database;
delta_d¼(data(:,1))’;
delta_p¼(data(:,2))’;
delta_h¼(data(:,3))’;
solubility¼(data(:,4))’;
a(1)¼mean(delta_d);
a(2)¼mean(delta_p);
a(3)¼mean(delta_h);
a(4)¼sqrt(a(1)̂ 2þa(2)̂ 2þa(3)̂ 2);
guess¼a;
options¼optimset(‘Display’,‘off’);
res¼1;
while res>1e-4;
[delta res]¼fminsearch(@QF,guess,options,delta_d,

delta_p,delta_h,.
solubility,n);
guess¼delta;
end
d_d¼delta(1); d_p¼delta(2); d_h¼delta(3); R_o¼delta(4);
R_a¼sqrt(4*(d_d-delta_d).̂ 2 þ (d_p-delta_p).̂ 2 þ

(d_h-delta_h).̂ 2);
RED¼(R_a/R_o);
clc
disp(‘*********************************************************’)
disp(‘Delta_d Delta_p Delta_h Solub RED’)
disp(‘*********************************************************’)
disp([delta_d’ delta_p’ delta_h’ solubility’ RED’])
disp(‘Data Fit ¼¼’)
Data_Fit¼1þQF(delta,delta_d,delta_p,delta_h,

solubility,n);
disp(Data_Fit)
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disp(‘Delta_d Delta_p Delta_h R_o’)
disp([d_d d_p d_h R_o])

QF.m

function y¼QF(x,delta_d,delta_p,delta_h,solubility,n)
d_d¼x(1);
d_p¼x(2);
d_h¼x(3);
R_o¼x(4);
R_a¼sqrt(4*(d_d-delta_d).̂ 2 þ (d_p-delta_p).̂ 2 þ

(d_h-delta_h).̂ 2);
for i¼1:n,

if R_a(i)>R_o;
if solubility(i)¼¼0;

A(i)¼1;
else

A(i)¼exp(R_o-R_a(i));
end

else R_a(i)<R_o;
if solubility(i)¼¼0;

A(i)¼exp(R_a(i)-R_o);
else

A(i)¼1;
end

end
end
y¼abs(((prod(A))̂ (1/n))�1);

Solvent_Database.m

%Numbr of Solvents n¼41;
% delt_d delta_p delta_h Solub
18.0 12.3 7.2 1.0;
17.4 13.7 11.3 1.0;
19.6 8.6 3.7 1.0;
18.2 6.3 6.1 1.0;
18.4 16.4 10.2 0;
19.0 16.6 7.4 1.0;
19.0 7.4 4.1 0;
16.6 8.2 7.4 0;
19.2 6.3 3.3 0;
16.8 5.7 8.0 0;
15.8 8.2 10.8 0;
16.0 9.0 5.1 0;
15.5 10.4 7.0 0;
16.2 12.1 4.1 0;
16.2 9.2 14.3 0;
20.0 18.0 4.1 0;
17.4 4.1 13.5 0;
17.8 3.1 5.7 0;
18.0 3.1 5.3 0;
19.0 1.8 7.4 0;
15.8 5.3 7.2 0;
16.0 5.1 12.3 0;
19.0 4.3 2.0 0;

16.0 15.5 4.5 0;
16.2 9.2 16.4 0;
15.8 3.7 6.3 0;
16.0 5.7 15.8 0;
15.3 6.1 4.1 0;
15.8 18.8 5.1 0;
18.0 1.4 2.0 0;
15.8 8.8 19.4 0;
16.6 12.0 20.7 0;
18.4 0 2.0 0;
14.5 2.9 5.1 0;
17.0 15.5 21.2 0;
17.8 0 0.6 0;
16.8 9.4 23.3 0;
15.1 12.3 22.3 0;
14.9 0 0 0;
17.0 11.0 26.0 0;
17.2 26.2 19.0 0
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